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Nucleation theory for helix unfolding in peptide chains
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This work introduces a microscopic nucleation theory of helix unfolding in peptide chains aimed at obtain-
ing a semiempirical estimation of the critical-size bubble of structural distortion which may function as the
kernel for helix destruction. A dynamic nucleation model for helix-coil transition has been previously intro-
duced as an ansatz to estimate the kinetic barrier of the helix-unfolding event@A. Fernández and A. Colubri, J.
Math. Phys.39, 3167~1998!#. However, the critical size of the helix-destruction bubble, empirically obtained
from computer simulations of favored folding pathways, has not been hitherto justified or determined from first
principles. This requires introducing a microscopic treatment of the long-time torsional dynamics to assess its
bearing on the formation of structural-distortion bubbles which eventually trigger the helix-unfolding process.
To reach this goal we introduce two operational tenets:~a! The torsional dynamics of the chain may be coarse
grained according to a discretization of the conformational state of each unit, resolved according to its signifi-
cant torsional isomers;~b! the semiempirical formulation accounts for the known dependence of the enthalpy
increment due to helix unfolding on the change in the effective solvent-exposed surface area. The functional
dependence on bubble size of the mean time of completion of the rate-determining step for helix unwinding is
shown to be in agreement with previousad hocmacroscopic models. However, in contrast with such treat-
ments, we infer the existence of a denaturation temperature from the dynamics of critical bubble formation,
rather than introducing it as ana priori postulate. Our determination of the critical temperature based on
nucleation kinetics theory of critical bubble formation coincides with those obtained from calorimetric and
spectroscopic measurements.@S1063-651X~99!11210-8#

PACS number~s!: 87.15.He, 87.10.1e, 87.15.Nn
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I. INTRODUCTORY REMARKS AND MOTIVATIONS

Helix-Coil transition phenomena in peptide chains a
fairly well understood from a static or thermodynamic pe
spective, validated at a mesoscopic level of descript
@1–4#. However, we still lack a kinetic treatment rooted in
analysis of the long-time torsional dynamics of the chain a
designed to identify the nucleation or rate-determining s
for helix unwinding. A major stumbling block in such
treatment is the dearth of data on the actual potential en
surface for a folding chain, from which crucial informatio
could be drawn on the activation energies@5–7# for the for-
mation of the helix-destruction kernel or critical bubble. Th
structural distortion bubble has been inferred to occur at
ends of the helix with the highest probability@7#.

In recent simulations making use of a semiempirical m
croscopic model of chain torsional dynamics, we ha
adopted the nucleation ansatz to reproduce the kinetic
helix-dismantling events @6#, and ultimately generate
experimentally-probed folding pathways. Such an ansatz
quires an assumption on the critical size of the helix bub
warranting the cascade of destructive events that follows
ter nucleation and leads to a complete dismantling of
helix. Empirically, we have found the critical sizeL5L* to
be approximately one third ofN, the length of the helica
segment@6#.

This is not the only result that needs rigorous validatio

*Present and permanent address.
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The exponential dependence onL of the mean time of for-
mation,t(L), of anL bubble has been previously establish
@7# using anad hocmodel which does not make use of eith
a geometric or a topological representation of the pep
backbone to account for the ocurrence of local structural
tortions. Thus, a treatment of torsional dynamics should v
date this functional dependence as well.

Moreover, the previous generic model postulates the
istence of a denaturation temperatureT5T* as ana priori
assumption@7#, instead of deducing its existence from fir
principles. Thus, the model of de Gennes introduces
bubble-expansion force which sets in asT>T* , and be-
comes a helix-restoring force whenT,T* . In contrast with
this model which hinges upon thead hocassumption of ex-
istence ofT* , we shall infer its existence and accurate
predict its value from the torsional dynamics and its bear
upon the formation of kernels triggering the helix unfoldin

Following these remarks, the need arises for theoret
underpinnings of three basic facts:~a! L* '(1/3)N; ~b!
t(L);exp(KL), with K5constant; and~c! existence of a de-
naturationT resulting from a sharp qualitative difference
the nucleation dynamics of both helix creation and helix d
struction. This is precisely the aim of this work, where
semiempirical treatment of the long-time torsional dynam
of the chain will be adopted to serve as the theoretical fram
work of the nucleation model.

Our goal will be achieved by introducing two basic o
erational tenets:~a! The torsional dynamics are coars
grained according to a ‘‘cis-trans’’~or compact-extended!
rotameric description of the conformation of each individu
4645 © 1999 The American Physical Society
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4646 PRE 60ARIEL FERNÁNDEZ AND ANDRÉS COLUBRI
residue@8#; ~b! the semiempirical formulation must accou
for the dependence of the enthalpy increment due to h
unfolding on the change in the effective solvent-exposed
face area@3,9#. Finally, the local torsional constraints ob
tained from tenet~a! are imposed onto the mesoscopic lev
of description of the dynamics governed by tenet~b! in order
to obtain an operational framework to derive the critical e
tent of structural distortion responsible for the destruction
the helix and theT-dependent time required to reach such
distortion.

The outline of the work is as follows: Sec. II is devoted
the semiempirical construction of a coarse conformat
manifold upon which we may draw a coarse nucleation r
theory for the folding/unfolding of an oligopeptide, later sp
cialized to the helix-coil transition context. Section III dea
with the estimation of the critical bubble sizeL* using a
coarse nucleation rate theory. Section IV is concerned w
the nucleation dynamics, establishing the existence of a
naturation temperature at which the formation of the criti
bubble becomes feasible within physically-relevant tim
cales.

II. COARSE TORSIONAL CONFORMATION MANIFOLD:
AN OPERATIONAL REPRESENTATION

As stated above, our primary goal is to develop a se
empirical dynamic nucleation theory of helix unfolding b
taking into account the long-time limit of torsional dynamic
The vast timescale gap between free torsions~;10 ps! and
bubble formation within a helix~;1 ms to seconds! requires
a suitable simplification of conformation space@6,8,10#
which nevertheless captures the main features of the do
nant torsional fluctuation ultimately responsible for the m
soscopic transition. Precisely at the mesoscopic level,
concept of intrachain contact must be operationally int
ducedvis-a-vis the maximum distance~;7 Å! for a mean-
ingful long-range interaction with associated decrease in h
content larger or equal to 1/2kBT (kB5Boltzmann constant!.
Each contact pattern~CP! of the chain represents a set
constraints applied on the residues engaged in the con
~those in proximity as well as those forming the concurr
loops and turns!, while free residues may adopt a discre
number of rotameric forms. Thus, the relative entropic c
tent of each CP may be easily determined by coarse-grai
the possible local torsional states.

To specify the fine structure of a CP-basin, we shall s
by discretely codifying the torsional states of a peptide ch
according to the local constraints to be fulfilled in order
form each possible CP. Thus, we shall discretize the s
mode torsional dynamics of the chain and, following sta
dard procedures, integrate out as conformational entropy@6#
the hard-mode dynamics–vibrational and angu
stretching–which operates on incommensurably fa
(10215– 10211s) timescales. The next step is to resolve ea
CP-basin in the potential energy surface~PES! as an en-
semble of substates@10–12#. Each substate represents on
possibly many–of the discretized torsional states of the ch
realizing the CP. At this point, we may introduce an ‘‘adi
batic ansatz’’ valid in the long-time limit of torsional dynam
ics if and only if thermal equilibration within CP-basins
incommensurably faster than transitions between CP’s. T
ix
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approximation, whose domain of validity will be confirme
in this work, represents an entrainment of the dynamics
the folding pathway coarsely resolved at the CP level.

In order to define a coarse version of the PES of r
operational value, we start by defining the coarse conform
tion manifold for a discretized version of the soft-mode d
namics. To reach this goal, we codify the local torsional st
of each residue~chain unit! according to the basin of attrac
tion where its two torsional dihedral coordinatesF, C lie
within the local potential energy surface. This local surfa
known as the Ramachandran plot@2#, consists of a map of
the 2-torus, or local (F,C)ucoordinate space, onto the en
ergy real line. This local surface has a finite and small nu
ber of basins of attraction of local minima, and its topog
phy depends on the kind of residue at the particular cont
position along the chain. As indicated in Figs. 1 and 2,
may regard the torsional conformation of each reside mod
Ramachandran basins, and this simplification begets a

FIG. 1. Discrete codification of local torsional states of am
noacids~residues! by indicating the basin~1, 2, 3, or 4! in the
Ramachandran map where the torsional coordinatesF, C lie. There
are four types of maps I–IV, depending on whether the residu
L-alanyl-like ~I!, glycine ~II !, precedes a proline~III !, or proline
~IV !. Thus, a Ramachandran discrete variableR(y,n)51,2,3,4, in-
dicates the basin for thenth residue in the conformation roughl
defined by the contact patterny.

FIG. 2. ~a! Consensus window for a minimalb-sheet structural
motif. ~b! Consensus window for a right-handeda-helix turn inter-
rupted by a proline~and a residue preceding proline!.
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PRE 60 4647NUCLEATION THEORY FOR HELIX UNFOLDING IN . . .
cretization of the torsional dynamics of the chain whose t
sional state may be now given in a binary matrix form.
simple terms, we are replacing detailed geometric inform
tion by a coarse topological representation.

In turn, this discretization is possible because equilib
tion within Ramachandran basins is incommensurably fa
than inter-basin transitions@6,8#. In essence, the discretize
Ramachandran map coarsely governs the local torsiona
namics of a single aminoacid residue of the peptide ch
Such dynamics are not correlated with those of nea
neighbor residues due to the torsional rigidity of the ba
bone bond (CO—NH) linking adjacent residues@2#. Further-
more, the general topological features of each Ramachan
map are preserved during the folding or unfolding proc
@1,2,6#, that is they are not essentially distorted~no basins are
fused or created! by long-range interactions develope
These considerations lead us naturally to define a ‘‘Ra
achandran variable,’’ denotedR(y,n), which indicates the
basin of attraction of the two dihedral torsional coordina
for residuen in substatey.

In our codification of the local torsional dynamics w
classify residues or aminoacids as follows:L-alanyl-like,
glycine, proline, and any residue preceding proline~Fig. 1!.
Thus, each residue is classified essentially according to
topology of its Ramachandran map, and there are four s
topologies. Thus, since anL-alanyl-like residue~the most
common kind of aminoacid in the protein sequence! with
contour positionn has three basins of attraction@2#, we
would get three possible values depending ony:R(y,n)
51,2,3, while if glycine is at thenth position, we would get
R(y,n)51,2,3,4, again depending ony. On the other hand, if
proline happens to be thenth residue, we would ge
R(y,n)51,3, while if thenth residue precedes proline, w
would obtain R(y,n)51,2. This codification is consisten
with the existence of local torsional isomers coarsely rep
sented as basins of attraction in the Ramachandran p
Generically speaking, we provide a consistent dynam
picture in which long-range intra-chain interactions are
termined by a set of local torsional constraints whose fulfi
ment is demanded by the need to avoid frustrated confor
tions containing torsional incongruities~for instance, an
extended local conformation within a loop, ab-bend or an
a-helix turn; or a compact local conformation within on
strand of ab-sheet!.

Following these tenets, the discretized torsional dynam
within a CP-basin may be computed according to the follo
ing formal scheme:

~a! We introduce a ternary variableG(n)51,2,3 indicat-
ing respectively whether thenth residue along the chain i
hydrophobic, neutral or hydrophilic~polar!.

~b! We determine the type of Ramachandran plot~I–IV !,
as indicated in Fig. 1, for each residuen51,...,N.

~c! We define substate y by two rows
$R(y,n),G(n)%n51,...,N , as illustrated in Fig. 2. Thus
R(y,n)51 indicates that thenth residue has adopted th
extended conformation compatible with ab-sheet;R(y,n)
52 indicates that either thenth residue has adopted a local
compact conformation compatible with ab-bend ~zero
pitch!, or with a left-handeda helix; finally, R(y,n)53 in-
dicates that the conformation of thenth residue is compatible
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with the formation of ab-bend or with a right-handeda
helix @2#.

~d! We determine the CP-basin to which a particular t
sional substate belongs by identifying consensus window
the matrix representation of the chain conformation. By co
sensus we simply mean a region of the chain where the l
topological constraints associated to the formation of a p
ticular folding or structural element or motif are fulfilled. I
other words, all residues belonging to the consensus wind
are in the ‘‘correct’’ torsional state~or Ramachandran basin!
to form the particular pattern. In this way, a consensus w
dow emerges as a pattern of local structural signals enco
in some portion of the aminoacid sequence. The broad
tude ~from 30° up to 60°,@2#! in the possible values of the
local torsional coordinates within the Ramachandran ba
and the vast structural distorsion it leads to, implies that
discrete codification cannot be implemented at the geome
level. Rather, the inter-basin transitions are meant to mi
changes in the local topological constraints to which the fl
ible chain is subject in order to reach specific structural p
terns.

~e! The dominant secondary structure motifs can be id
tified as recognizable patterns in the substatey. Thus, the
right-handeda-helix requires a window of residues wit
R(y,n)53. Without loss of generality and for the sake
notation, we shall identify this motif by a window iny with
R(y,n)53 and a periodicG(n)515G(n13) or G(n)51
5G(n14) hydrophobicity~Fig. 2!. Because of the highly
helix-disruptive tendencies of glycine@2#, if its local diagram
~of type II! appears within a consensus window, the ent
helix turn containing glycine is obliterated from the CP. T
disrupting tendencies of the proline, on the other hand,
not require special instructions as theR(y,n)53 value can-
not occur for a residue preceding proline, as shown in Fig
and 2. A consensus window translating into the~R! a-helix is
indicated in Fig. 2. Similarly, for a left-handeda-helix, we
must demand permanence ofR(y,n)52 value, while retain-
ing all other conditions regarding hydrophobic periodic
along the chain.

Likewise, being pleated structures,b-sheets are characte
ized by the persistence of the extended local conforma
basin marked byR(y,n)51. In order to fulfill hydrophobic/
polar compatibilities, theG-values must be preserved in
parallel or antiparallel fashion, depending on the relative o
entation of the strands in theb-sheet~Fig. 2!.

Turns and bends may be a determinant of theb-sheet or
simply required to form hydrophobic contacts, thus they w
be treated generically, regardless of whether or not they
alize b-sheet topologies. Should such motifs require clos
of chain loops, they would require aR(y,n)52 or R(y,n)
53 consensus window.

A description of the fine structure of CP-basinsvis-a-vis
our discretized codification of torsional states requires t
we compute the substate multiplicityV( i ) of each CP(i ),
that is, the number of possible substates translatable
CP(i ). Thus, we obtain:

V~ i !5 )
n51,...N

q~ i ,n!, ~1!

whereq( i ,n) indicates the number of possible values of t
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nth Ramachandran variableR(y,n) for all substratesy’s
translatable into CP(i ). In addition, we have:q( i ,n)51, if
thenth residue is engaged in a structural element recorde
CP(i ); or q( i ,n)52, 3, or 4, if thenth residue isnot en-
gaged in any structural element of CP(i ), andthenth residue
is proline or a residue preceding proline@q( i ,n)52#, thenth
residue is

alanyl-like @q~ i ,n!53#,

or the nth residue is glycine@q~ i ,n!54#. ~2!

III. COARSE RATE THEORY OF NUCLEATION
FOR HELIX UNFOLDING

This section is devoted to the development of a nuclea
rate theory rooted in the coarse description of the torsio
conformation manifold given in Sec. II. Due to the esse
tially enthalpic nature of the helix-dismantling kinetic bar
ers@6#, two paramount thermodynamic parameters of the
lix unfolding process must be estimated: The entha
change, denoted2DH(L* ), associated to critical bubbl
formation within anN-helix, and the enthalpy change, d
noted2DH(N2L* ), involved in the full unfolding of the
remaining helix after the critical intermediate has formed
should be emphasized that our system consists in an
semble of protein molecules not encompassing the solv
although our treatment thoroughly incorporates its eff
upon the system.

This section is divided into two subsections, the first de
ing with the estimation of relevant thermodynamic para
eters, while the second deals with the coarse rate theory

A. Exposed surface area and bubble formation

Considerable efforts to estimate thermodynamic fold
parameters have revealed that the enthalpy change in a
ing event should be related to changes in the solvent ac
sible surface area. This line of thought was pioneered
Sinanoglu and Ferna´ndez@9#, reviewed in@2#, and has been
recently resurfaced@3#, thus it will only be sketched here. Le
us first compute the quantityDH(N), the enthalpy change o
formation of anN-helix. For simplicity, we shall assume tha
all residues are of the most commonL-alanyl-like type. The
lengthN may be written asN5r •w, wherer is the number
of units per turn andw is the number of turns~r is assumed
fixed for a given helix, whiler 53.6 when averaged over
statistical ensemble of helices@2#!. In order to incorporate
the packing effect at a mesoscopic level, we may adop
geometric representation of stacking by regarding residue
cylinders linked as indicated in Fig. 3. The actual geome
of residues is immaterial, as only the effective changes
solvent-accessible areas become relevant. In agreement
@9#, the variation of cavity free energy associated to the ov
all folding event leading toN-helix formation is

DG~N!'gDs~N!. ~3!

Hereg denotes the microthermodynamic surface tension
erating down to molecular dimensions, as determined by
nanoglu@13# and measured chromatographically by Horva
and coworkers@14#; andDs(N) denotes the effective chang
in
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in exposed surface area. For fixedw, the changeDs may be
evaluated asDs5wDs8, where Ds8 is the surface area
change for a single pile in the helix, as depicted in Fig.
SinceDs8522b(w21), where22b is the loss in exposed
area per residue, we get

DG~N!522gbN12gbr. ~4!

On the other hand, using Eq.~1!, the entropic change
associated to constrainingN residues to their structurally
relevant Ramachandran basin is

DS~N!5R ln@V~random coil!/V~N-helix!#5R ln 32N

52NR ln 3. ~5!

whereV represents the number of microscopic realizatio
of a given structural pattern. From Eqs.~4! and ~5! we get

DH~N!52~2gb1RT ln 3!N12gbr. ~6!

To estimate the parameter 2gb we may take into accoun
the nucleation event in the zipper model of helix formati
@2#. Since the helix formation kernel consists in a single p
ing of two residues obtained after a single turn, we get

DG~nuc.!522gb5h1~r 11!RT ln 3, ~7!

FIG. 3. Schematic representation of the packing of ana-helix in
order to minimize the effective solvent-exposed surface area.
actual geometry of each residue is immaterial within the contex
the theory, only the parameterb becomes relevant.

FIG. 4. Change in solvent-exposed surface area associated t
formation of a single pile within the helix.
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whereDG(nuc.) represents the free energy change ass
ated to the nucleation event, which is typically very small,
the order of 1/10 kcal/mol@15#. On the other hand
DH(nuc.)5h'23.1 kcal/mol.@15#. Equation~7! allows us
to infer the existence of a denaturation temperature, take
be the value at whichDG(nuc.)'0, and beyond which no
nucleation kernel for helix formation becomes stable. T
values given in Table I reveal thatT* '313 °K. A consistent
theory should yield and identical value for the denaturat
temperature regarded as the temperature at which the cr
size bubble forms expeditiously within physically-releva
timescales. This is indeed the case, as shown in the
section. Furthermore, the value given is in perfect agreem
with that obtained from calorimetric measurements of de
turation criticality in proteins of comparable size@16#.

B. Coarse nucleation rate theory

In order to determine the rate-limiting step in the he
unfolding transition, we assume that a bubble of lengthL in
a helix of contour lengthN forms at one extremity@7# asso-
ciated to the contour region@N2L11,N#. As we know,
such bubbles may easily reverse back to the helical con
mation@2# unless they reach a critical sizeL5L* , which has
been empirically estimated to be about 30%N. In the latter
case, the bubble becomes equally prone to expansion a
the helix, triggering the helix coil transition. In order to com
pute L* , we must determine the Arrhenius transition ra
k(2,L) andk(1,L), wherek(2,L) denotes the unimolecu
lar rate of dismantling the remaining helix with contour r
gion @1,N2L#, andk(1,L) denotes the unimolecular rate o
full helix recovery, with both rates determined relative to t
L bubble as the starting point. Thus,L* must satisfy the
equation:

k~2,L* !5k~1,L* !. ~8!

The kinetic barrierB(1,L) associated to helix recover
~or L-bubble destruction! is of entropic origin@6,10#, sinceL
units must be frozen in a single Ramachandran basin to
store the@N2L11,N#-helix. Thus, we obtain:

B~1,L !52TDS~1,L !5LRT ln 3. ~9!

TABLE I. Temperature dependence of the stability of the he
formation kernel, as measured byDG(nuc.), the change in free
energy associated to forming a single helix turn.

T @°K# DGnuc @Kcal/mol#

298 20.12
303 20.07
308 0.02
313 0.03
318 0.08
323 0.13
328 0.18
333 0.23
338 0.28
343 0.33
348 0.38
ci-
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On the other hand, the pre-exponential factorf (1,L) to
k(1,L) is

f ~1,L !532L31011s21 ~10!

where f 51011s21 is the mean free torsional frequency of
~C,F! degree of freedom@17#, and 32L is the probability
that L discretized torsions adopt simultaneously the heli
Ramachandran basin from within three possible choic
Thus, we get

k~1,L !5 f ~1,L !exp@2B~1,L !/RT#5322L31011s21.
~11!

Now we must computek(2,L). As indicated in Sec. III
A, we getB(2,L)52DH(N2L). On the other hand, the
pre-exponential factorf (2,L) becomes now proportional to
2(N-L), the sum of all torsional possibilities which are su
cessful in shifting any of the~N-L! local conformations to
one of the two Ramachandran basins different from the
compatible with the helix. Thus, we get

f ~2,L !52~N-L !3107 s21 ~12!

where 107 s215torsional frequency for a residue engaged
an a-helix @6#.

Using Eqs.~6!, ~9!–~12! we can translate Eq.~8! into a
working equation to determine the critical sizeL* of the
helix-destruction kernel at temperatureT as:

322L* 31011s21

52~N2L* !3107 s21

3exp$@2~2gb1RT ln 3!~N-L* !12gbr#/RT%.

~13!

Equation~13! is transcendental and thus it cannot be effe
tively manipulated algebraically: it will be solved numer
cally, as indicated in Sec. IV.

IV. RESULTS

The numerical solution of Eq.~13! obtained at a typical
renaturation temperatureT5308 °K is displayed in Table II.
Direct inspection of the results reveal the rapidly converg

- TABLE II. The critical bubble sizeL* as a function of the
contour lengthN of the helix.

N L*

10 5.47
20 8.58
30 11.83
40 15.13
50 18.45
60 21.79
70 25.13
80 28.47
90 31.84
100 35.2
1000 339.86
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4650 PRE 60ARIEL FERNÁNDEZ AND ANDRÉS COLUBRI
behavior L* '(1/3)N, in virtually perfect agreement with
the previous empirical dependence determined from c
puter simulations of favored folding pathways that yielded
predictive folding algorithm@6#.

The actualT-dependence of the critical bubble size is d
played in Table III forN560. This length, in turn, has bee
adopted since it corresponds to the shortest helix for wh
the empirically found asymptotic dependence is reprodu
to within 2% accuracy~cf. Table II!. As expected, the critica
size of the bubble gets smaller as the temperature increa
implying that thermal fluctuations make a smaller bub
prone to expansion within the helix, while the same bub
would not trigger the helix unfolding at lower temperature

The actual timespan of the helix unfolding process is
netically determined by the rate-determining step, that is,
formation of the critical kernel or bubble. According to th
coarse nucleation theory developed in Sec. III, this times
is t(L* ), the time it takes to form the critical bubble, whic
is given by:

t~L* !5~2L* !2131027 s

3exp$@~2gb1RT ln 3!L* 22gbr#/RT%.

~14!

The dominant exponential dependence,t(L* );exp(KL* ),
with K5(2gb1RT ln 3) is functionally in agreement with
previous generic estimations rooted in ad-hoc mesosc
models @cf. Ref. @7#, Eq. ~57!#. However, in contrast with
such kinetic models that introducea priori the existence of a
denaturation temperature, our nucleation theory does no
cessitate of this assumption:The existence of the denatu
ation temperature is grounded in the kinetics of formation
the helix-destruction kernel itself. Inspection of Table III re-
veals a sharp drop of over five orders of magnitude int(L* )
as the temperature is raised from 298 °K to 323 °K, while
actual formation of the critical bubble becomes access
within meaningful over-all folding times~;10 s for N560
@6#! only at T5T* 5313 °K.

This high sensitivity oft(L* ) on T is responsible for the
qualitatively dramatic effect, characterized dynamically
the feasibility of helix unfolding within relevant timescale
This fact explains the existence of a denaturation tempera

TABLE III. Temperature dependence of the critical bubble s
and of the timet(L* ) of formation of the critical bubble. The re
sults were obtained forN560.

T @°K# L* t(L* ) @s#

298 23.49 18 484.5
303 22.65 1229.24
308 21.79 98.16
313 20.92 9.36
318 20.03 1.06
323 19.12 1.431021

328 18.2 231022

333 17.26 431023

338 16.31 8.731024

343 15.34 2.231024

348 14.35 6.331025
-
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from the perspective of nucleation kinetics. Furthermore,
contrasting Tables I and III, we can establish the consiste
of our theory, sinceprecisely the same physically realist
temperature that makes it possible to form a hel
destruction bubble(T5T* 5313 °K) is the temperature tha
makes the kernel for helix formation (a single turn) unstab.
Thus the critical temperature is unambiguously identified a
the coincidence of both inferences~cf. Tables I and III! de-
termines the validity of our approach.

Furthermore, our theoretical estimate is in solid agr
ment with experimental determinations of the denaturat
temperature of proteins of comparable size, and is ident
to the critical value obtained from calorimetric measu
ments by Privalov and coworkers@16#.

V. DISCUSSION

In contrast with previous thermodynamic approaches
ad hockinetic models, this work introduces a kinetic theo
of nucleation for helix-coil transition phenomena rooted in
coarse microscopic description of torsional dynamics in
long-time limit. The theory makes use of a discrete codific
tion of the local torsional states of the chain, while casti
the entropically-driven solvophobic packing of the helix
terms of the microthermodynamic surface tension. In t
way, the microscopic level of description, which allows us
determine the local torsional constraints, is combined wit
mesoscopic level required to account for nonlocal inter
tions. This is effectively carried out by transferring the loc
torsional constraints to the coarser level upon which surf
tension effects become meaningful.

The theory does notassumethe existence of a denatur
ation temperature:It deduces its existence from first prin
ciples and yields accurate critical values. The critical tem-
perature is obtained from dynamic considerations: It
defined as the lowest temperature at which the he
destruction kernel or bubble is formed within physicall
relevant timescales~less than the overall folding timescales!,
while the nuclear helix turn required to initiate the cascade
helix-growth events becomes unstable.

Besides accurately predicting the existence and conc
value of the denaturation temperature, the theory valida
the empirical computational tenet that a bubble with size
about one third of the total contour length of the helix b
comes a critical helix-destruction kernel@6#. Finally, our
theory is shown to be consistent with previousad hocmeso-
scopic models in which the existence of a denaturation te
perature is postulated, as opposed to being inferred from
basic tenets themselves@7#.

While the stability of the helix-creation kernel~a single
turn! is obviously independent of the length of the helix, t
feasibility of formation of the critical bubble is strongl
N-dependent. This observation leads us to generically de
two @T* (c.) andT* (d.)# critical values instead of one (T* ),
a distinction which becomes more and more apparent in
limit of long chains N.100. The critical temperature
T* (c.), beyond which the creation kernel becomes unsta
is in general lower than the critical temperature for he
destructionT* (d.). At 55<N<60, T* (c.) andT* (d.) are
within half a degree difference and therefore a single va
T* 5T* (c.)5T* (d.) is identifiable given the experimenta



e

an

o
ke
fo
y
o
b

is-

am

ch

on-
d
ay

PRE 60 4651NUCLEATION THEORY FOR HELIX UNFOLDING IN . . .
uncertainty of;1 degree@16–18#. However, forN.60, a
metastable folding phase of ‘‘slow denaturation’’ emerg
for T within the regionT* (c.),T,T* (d.). This ‘‘slow de-
naturation’’ regime has been identified in spectroscopic–
obviously not in thermodynamic–measurements@18#. Ac-
cording to our theory, it corresponds to the slow formation
the critical bubble which, as demonstrated in this work, ta
times incommensurably longer than overall folding times
T,T* (d.) ~cf. Table III!. Furthermore, however long it ma
take to form the destruction kernel, there is no possibility
restoring the helix because the formation kernel is unsta
for T.T* (c.): The helix cannot be recovered once d
mantled, however slow the latter process might be. In forth-
t.

ct

l,
s

d

f
s
r

f
le

coming work we shall attempt to construct a phase diagr
to characterize the kinetic metastability regimeT* (c.),T
,T* (d.) as a function of chain length.
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