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This work introduces a microscopic nucleation theory of helix unfolding in peptide chains aimed at obtain-
ing a semiempirical estimation of the critical-size bubble of structural distortion which may function as the
kernel for helix destruction. A dynamic nucleation model for helix-coil transition has been previously intro-
duced as an ansatz to estimate the kinetic barrier of the helix-unfolding [@veRérnaadez and A. Colubri, J.

Math. Phys.39, 3167(1998]. However, the critical size of the helix-destruction bubble, empirically obtained
from computer simulations of favored folding pathways, has not been hitherto justified or determined from first
principles. This requires introducing a microscopic treatment of the long-time torsional dynamics to assess its
bearing on the formation of structural-distortion bubbles which eventually trigger the helix-unfolding process.
To reach this goal we introduce two operational ten@sThe torsional dynamics of the chain may be coarse
grained according to a discretization of the conformational state of each unit, resolved according to its signifi-
cant torsional isomergp) the semiempirical formulation accounts for the known dependence of the enthalpy
increment due to helix unfolding on the change in the effective solvent-exposed surface area. The functional
dependence on bubble size of the mean time of completion of the rate-determining step for helix unwinding is
shown to be in agreement with previoad hocmacroscopic models. However, in contrast with such treat-
ments, we infer the existence of a denaturation temperature from the dynamics of critical bubble formation,
rather than introducing it as aa priori postulate. Our determination of the critical temperature based on
nucleation kinetics theory of critical bubble formation coincides with those obtained from calorimetric and
spectroscopic measuremeritS1063-651X%99)11210-9

PACS numbds): 87.15.He, 87.10:¢e, 87.15.Nn

I. INTRODUCTORY REMARKS AND MOTIVATIONS The exponential dependence brof the mean time of for-
mation,t(L), of anL bubble has been previously established

Helix-Coil transition phenomena in peptide chains are[7] using anad hocmodel which does not make use of either

fairly well understood from a static or thermodynamic per-a geometric or a topological representation of the peptide
spective, validated at a mesoscopic level of descriptiorbackbone to account for the ocurrence of local structural dis-
[1-4]. However, we still lack a kinetic treatment rooted in antortions. Thus, a treatment of torsional dynamics should vali-
analysis of the long-time torsional dynamics of the chain andlate this functional dependence as well.

designed to identify the nucleation or rate-determining step Moreover, the previous generic model postulates the ex-
for helix unwinding. A major stumbling block in such a istence of a denaturation temperatdre T* as ana priori
treatment is the dearth of data on the actual potential energgssumptior{7], instead of deducing its existence from first
surface for a folding chain, from which crucial information principles. Thus, the model of de Gennes introduces a
could be drawn on the activation energjés-7] for the for-  bubble-expansion force which sets in a&T*, and be-
mation of the helix-destruction kernel or critical bubble. Thiscomes a helix-restoring force wh@h<T*. In contrast with
structural distortion bubble has been inferred to occur at théhis model which hinges upon tre& hocassumption of ex-
ends of the helix with the highest probability]. istence of T*, we shall infer its existence and accurately

In recent simulations making use of a semiempirical mi-predict its value from the torsional dynamics and its bearing

croscopic model of chain torsional dynamics, we haveupon the formation of kernels triggering the helix unfolding.
adopted the nucleation ansatz to reproduce the kinetics of Following these remarks, the need arises for theoretical
helix-dismantling events[6], and ultimately generate underpinnings of three basic factéa) L*~(1/3)N; (b)
experimentally-probed folding pathways. Such an ansatz re{L)~expKL), with K= constant; andc) existence of a de-
quires an assumption on the critical size of the helix bubblenaturationT resulting from a sharp qualitative difference in
warranting the cascade of destructive events that follows afthe nucleation dynamics of both helix creation and helix de-
ter nucleation and leads to a complete dismantling of thetruction. This is precisely the aim of this work, where a
helix. Empirically, we have found the critical site=L* to  semiempirical treatment of the long-time torsional dynamics
be approximately one third dfl, the length of the helical of the chain will be adopted to serve as the theoretical frame-
segmen{6]. work of the nucleation model.

This is not the only result that needs rigorous validation:  Our goal will be achieved by introducing two basic op-
erational tenets:(a) The torsional dynamics are coarse
grained according to a “cis-transor compact-extended

*Present and permanent address. rotameric description of the conformation of each individual
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residue[8]; (b) the semiempirical formulation must account Codified Ramachandran Maps

for the dependence of the enthalpy increment due to helix 2
unfolding on the change in the effective solvent-exposed sur- |

face ared3,9]. Finally, the local torsional constraints ob- |___| |:| 1 __E] |‘|_‘|
tained from tenefa) are imposed onto the mesoscopic level

of description of the dynamics governed by te(®tin order ] 34F] [H— 4

to obtain an operational framework to derive the critical ex-
tent of structural distortion responsible for the destruction of i il
the helix and thel-dependent time required to reach such a

distortion.
The outline of the work is as follows: Sec. Il is devoted to
the semiempirical construction of a coarse conformation D D

0

manifold upon which we may draw a coarse nucleation rate
theory for the folding/unfolding of an oligopeptide, later spe-
cialized to the helix-coil transition context. Section Il deals i Y,

with the estimation of the critical bubble size* using a

coarse nucleation rate theory. Section IV is concerned with FIG. 1. Discrete codification of local torsional states of ami-
the nucleation dynamics, establishing the existence of a ddwacids(residues by indicating the basir(1, 2, 3, or 4 in the
naturation temperature at which the formation of the criticalRamachandran map where the torsional coordirte¥ lie. There

bubble becomes feasible within physically-relevant timesare four types of maps I-IV, depending on whether the residue is
cales. L-alanyl-like (1), glycine (II), precedes a prolin€ll), or proline

(IV). Thus, a Ramachandran discrete variadR{g,n)=1,2,3,4, in-
dicates the basin for theth residue in the conformation roughly
Il. COARSE TORSIONAL CONFORMATION MANIFOLD: defined by the contact patteyn
AN OPERATIONAL REPRESENTATION

: . .approximation, whose domain of validity will be confirmed
As stated above, our primary goal is to develop a semi-

o : . ) ; in this work, represents an entrainment of the dynamics to
emp|r|gal dynamic nucleann thepry of hel!x unfoldmg.by the folding pathway coarsely resolved at the CP level.
taking into account the long-time limit of torsional dynamics.

Th . I b ¢ £n40 q In order to define a coarse version of the PES of real
e vast timescale gap between free torsiond0 ps and 0 ational value, we start by defining the coarse conforma-
bubble formation within a helix~1 us to secondsrequires

itable simolificati ¢ ; . 681 tion manifold for a discretized version of the soft-mode dy-
a suitable simplification of conformation spa¢6,8,10  \amics. To reach this goal, we codify the local torsional state
which neyertheless c.’?\ptures the main featgres of the domb'f each residuéchain uni} according to the basin of attrac-
nant torsional fluctuation ultimately responsible for the me-;q, \yhere its two torsional dihedral coordinatés ¥ lie
soscopic transition. Precisely at the mesoscopic level,

. . ! - thﬁ/ithin the local potential energy surface. This local surface,
concept of intrachain contact must be operationally iNtro1 1own as the Ramachandran plai, consists of a map of

@cedws-a-wsthg maximum Q|stanc(aj7 A) for a mean-  the 2-torus, or local®,¥)—coordinate space, onto the en-
ingful long-range interaction with associated decrease in he%trgy real line. This local surface has a finite and small num-
Eontr?nt larger or equal;o ]l:g-{] (th: Boltzmann constajt ¢ ber of basins of attraction of local minima, and its topogra-
ach contact pgtter(C ) of t e chain represents a set o hy depends on the kind of residue at the particular contour
constraints applied on the residues engaged in the contacts i n along the chain. As indicated in Figs. 1 and 2, we

(those in proximity as well as those forming the concurrenty . veqard the torsional conformation of each reside modulo

loops and turng while free residues may adopt a discrete pamachandran basins, and this simplification begets a dis-
number of rotameric forms. Thus, the relative entropic con-

tent of each CP may be easily determined by coarse-graining
the possible local torsional states.

To specify the fine structure of a CP-basin, we shall start aolmolmollcoll oo el sollec
by discretely codifying the torsional states of a peptide chainj ™ |g [ 1o |[/m | |m |:la | |o | |O
according to the local constraints to be fulfilled inorderto S 574 @0 moo'Cmo. com'mcoC omo OO m
form each possible CP. Thus, we shall discretize the soft- ' !
mode torsional dynamics of the chain and, following stan- ﬁ—s bend—’:
dard procedures, integrate out as conformational entr6py
the hard-mode dynamics—vibrational and angular
stretching—which operates on incommensurably faster
(10" **-10 *s) timescales. The next step is to resolve each
CP-basin in the potential energy surfa@@ES as an en-
semble of substatdd40-12. Each substate represents one—
possibly many—of the discretized torsional states of the chain
realizing the CP. At this point, we may introduce an “adia-
batic ansatz” valid in the long-time limit of torsional dynam-  FIG. 2. (a) Consensus window for a minim#sheet structural
ics if and only if thermal equilibration within CP-basins is motif. (b) Consensus window for a right-hande¢helix turn inter-
incommensurably faster than transitions between CP’s. Thigipted by a prolindand a residue preceding proljne

A} minimal B sheet consensus

R-a helix turn followed by proline
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cretization of the torsional dynamics of the chain whose torwith the formation of ag-bend or with a right-handed

sional state may be now given in a binary matrix form. Inhelix [2].

simple terms, we are replacing detailed geometric informa- (d) We determine the CP-basin to which a particular tor-

tion by a coarse topological representation. sional substate belongs by identifying consensus windows in
In turn, this discretization is possible because equilibrathe matrix representation of the chain conformation. By con-

tion within Ramachandran basins is incommensurably fastefensus we simply mean a region of the chain where the local

than inter-basin transitioni®,8]. In essence, the discretized topological constraints associated to the formation of a par-

Ramachandran map coarsely governs the local torsional dyicular folding or structural element or motif are fulfilled. In
other words, all residues belonging to the consensus window

namics of a single aminoacid residue of the peptide chain:™ ™ i > ; ,
Such dynamics are not correlated with those of neared'® I the “correct” torsional statéor Ramachandran bagin

neighbor residues due to the torsional rigidity of the back-fjoo\fle;mm?re fsag?:laraﬁztrtﬁg{ I?cg;I:txi}cﬁrglcs?nzzgsgﬁcv;& d
bone bond (CO-NH) linking adjacent residud®]. Further- 9 P 9

: in some portion of the aminoacid sequence. The broad lati-
more, the general topological features of each Ramachandrqﬂde (from 30° up to 60°[2]) in the possible values of the
map are preserved during the folding or unfolding proces !

) ; . : Yocal torsional coordinates within the Ramachandran basin,
[1,2,6], that is they are not essenual_ly d|stort(enb basins aré 54 the vast structural distorsion it leads to, implies that the
fused or created by long-range interactions developed. giscrete codification cannot be implemented at the geometric
These considerations lead us naturally to define a “Ramyeye|. Rather, the inter-basin transitions are meant to mimic

achandran variable,” denote(y,n), which indicates the changes in the local topological constraints to which the flex-
basin of attraction of the two dihedral torsional coordinatesple chain is subject in order to reach specific structural pat-

for residuen in substatey. terns.

In our codification of the local torsional dynamics we (e) The dominant secondary structure motifs can be iden-
classify residues or aminoacids as follows:alanyl-like, tified as recognizable patterns in the substat&hus, the
glycine, proline, and any residue preceding prolife. 1). right-handeda-helix requires a window of residues with
Thus, each residue is classified essentially according to the(y,n)=3. Without loss of generality and for the sake of
topology of its Ramachandran map, and there are four suchotation, we shall identify this motif by a window inwith
topologies. Thus, since ab-alanyl-like residue(the most R(y,n)=3 and a periodic&z(n)=1=G(n+3) or G(n)=1
common kind of aminoacid in the protein sequenagth ~ =G(n+4) hydrophobicity(Fig. 2). Because of the highly
contour positionn has three basins of attractid2], we  helix-disruptive tendencies of glycife], if its local diagram
would get three possible values depending YR(y,n) (of type Il) appears within a consensus window, the entire
=1,2,3, while if glycine is at theth position, we would get helix turn containing glycine is obliterated from the CP. The
R(y,n)=1,2,3,4, again depending gnOn the other hand, if disrupting tendencies of the proline, on the other hand, do
proline happens to be thath residue, we would get not require special instructions as tR€y,n) =3 value can-
R(y,n)=1,3, while if thenth residue precedes proline, we Not occur for a residue preceding proline, as shown in Figs. 1
would obtain R(y,n)=1,2. This codification is consistent and 2. A consensus window translating into (R a-helix is
with the existence of local torsional isomers coarsely repreindicated in Fig. 2. Similarly, for a left-handee+helix, we
sented as basins of attraction in the Ramachandran plot8lust demand permanenceRfy,n) =2 value, while retain-
Generically speaking, we provide a consistent dynamicalnd all other conditions regarding hydrophobic periodicity
picture in which long-range intra-chain interactions are de-along the chain.
termined by a set of local torsional constraints whose fulfill- ~ Likewise, being pleated structureg&sheets are character-
ment is demanded by the need to avoid frustrated conformdzed by the persistence of the extended local conformation
tions containing torsional incongruitie€or instance, an basin marked byR(y,n)=1. In order to fulfill hydrophobic/
extended local conformation within a loop,Abend or an Polar compatibilities, theG-values must be preserved in a
a-helix turn; or a compact local conformation within one parallel or antiparallel fashion, depending on the relative ori-
strand of aB-sheel. entation of the strands in th@-sheet(Fig. 2).

Following these tenets, the discretized torsional dynamics Turns and bends may be a determinant of gheheet or
within a CP-basin may be computed according to the follow-Simply required to form hydrophobic contacts, thus they will
ing formal scheme: be treated generically, regardless of whether or not they re-

(a) We introduce a ternary variabt@(n)=1,2,3 indicat- alize B-sheet topologies. Should such motifs require closure
ing respectively whether theth residue along the chain is ©f chain loops, they would require R(y,n)=2 or R(y,n)

hydrophobic, neutral or hydrophiligolan. =3 consensus window. S
(b) We determine the type of Ramachandran gletV), A description of the fine structure of CP-baswis-a-vis
as indicated in Fig. 1, for each residoe=1,...N. our discretized codification of torsional states requires that

(©0 We define substatey by two rows We compute the substate multiplicif (i) of each CFX),
{R(y,n),G(N)}p=1..n, as illustrated in Fig. 2. Thus, that is, the number of possible substates translatable into
R(y,n)=1 indicates that thenth residue has adopted the CP(). Thus, we obtain:
extended conformation compatible with gasheet;R(y,n)
=2 indicates that either theth residue has adopted a locally Q)= H q(i,n), 1)
compact conformation compatible with g-bend (zero n=1,.N
pitch), or with a left-handedr helix; finally, R(y,n)=3 in-
dicates that the conformation of théh residue is compatible whereq(i,n) indicates the number of possible values of the
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nth Ramachandran variablR(y,n) for all substratesy’s Residue i
translatable into CRY. In addition, we haveq(i,n)=1, if W
thenth residue is engaged in a structural element recorded in
CP(); or q(i,n)=2, 3, or 4, if thenth residue isnot en- - @€
gaged in any structural element of GP(andthenth residue AL
is proline or a residue preceding proling(i,n) =2], thenth 2]
residue is

o Residue i+2

alanyl-like [q(i,n)=3],

or the nth residue is glycing q(i,n)=4]. (2
Backbone

Ill. COARSE RATE THEORY OF NUCLEATION

FIG. 3. Schematic representation of the packing o&drelix in
FOR HELIX UNFOLDING

order to minimize the effective solvent-exposed surface area. The

This section is devoted to the development of a nucleatiof@ctual geometry of each residue is immaterial within the context of
rate theory rooted in the coarse description of the torsiondf'® theory. only the parametbrbecomes relevant.
conformation manifold given in Sec. Il. Due to the essen-, i
tially enthalpic nature of the helix-dismantling kinetic barri- N €xposed surface area. For flxml'she_ changels may be
ers[6], two paramount thermodynamic parameters of the he€valuated asAs=wAs’, where As’ is the surface area
lix unfolding process must be estimated: The enthalpychange f/or a single pile in the helix, as depicted in Fig. 4.
change, denoted-AH(L*), associated to critical bubble SINC€AS’=—2b(w—1), where—2b is the loss in exposed
formation within anN-helix, and the enthalpy change, de- &/€@ per residue, we get
noted —AH(N—L*), involved in the full unfolding of the
remaining helix after the critical intermediate has formed. It AG(N)=—2ybN+2ybr. )
should be emphasized that our system consists in an en-

semble of protein molecules not encompassing the solvent On the other hand, using Eql), the entropic change

although our treatment thoroughly incorporates its effectaissomated fo constrainirgy r_es!dues to their structurally-
upon the system. relevant Ramachandran basin is

This section is divided into two subsections, the first deal- _ halivil— N
ing with the estimation of relevant thermodynamic param- AS(N)=RIn[Q(random coil/Q(N-helix)]=RIn3
eters, while the second deals with the coarse rate theory. =—NRIn 3. (5)

A. Exposed surface area and bubble formation where () represents the number of microscopic realizations

Considerable efforts to estimate thermodynamic foldingOf a given structural pattern. From Ed) and (5) we get

parameters have revealed that the enthalpy change in a fold- _

ing event should be related to changes in the solvent acces- AH(N)==(2yb+RTIn3)N+2ybr. ©
sible surface area. This line of thought was pioneered by
Sinanoglu and Fermalez[9], reviewed in[2], and has been
recently resurfacef8], thus it will only be sketched here. Let
us first compute the quantityH (N), the enthalpy change of
formation of anN-helix. For simplicity, we shall assume that
all residues are of the most commbralanyl-like type. The AG(nuc)=—2yb=h+(r+1)RTIn3 @
lengthN may be written adN=r-w, wherer is the number ’
of units per turn andv is the number of turng is assumed
fixed for a given helix, whiler=3.6 when averaged over a
statistical ensemble of helicgg]). In order to incorporate

the packing effect at a mesoscopic level, we may adopt a
geometric representation of stacking by regarding residues as
cylinders linked as indicated in Fig. 3. The actual geometry
of residues is immaterial, as only the effective changes in
solvent-accessible areas become relevant. In agreement with
[9], the variation of cavity free energy associated to the over-
all folding event leading tdN-helix formation is

To estimate the parameteyB we may take into account
the nucleation event in the zipper model of helix formation
[2]. Since the helix formation kernel consists in a single pil-
ing of two residues obtained after a single turn, we get

Random coil conformation Helix conformation

AG(N)~ yAs(N). 3)

Solvent-exposed Solvent-exposed

Here y denotes the microthermodynamic surface tension op- o alies. vt BD WY siirface aren="wia£3b

erating down to molecular dimensions, as determined by Si-
nanoglu[13] and measured chromatographically by Horvath  FIG. 4. Change in solvent-exposed surface area associated to the
and coworker$14]; andAs(N) denotes the effective change formation of a single pile within the helix.
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TABLE I. Temperature dependence of the stability of the helix-  TABLE II. The critical bubble sizeL* as a function of the
formation kernel, as measured yG(nuc.), the change in free contour lengthN of the helix.
energy associated to forming a single helix turn.

N L*

T [°K] AG,,.[Kcal/mol] 10 547
298 —-0.12 20 8.58
303 —-0.07 30 11.83
308 0.02 40 15.13
313 0.03 50 18.45
318 0.08 60 21.79
323 0.13 70 25.13
328 0.18 80 28.47
333 0.23 90 31.84
338 0.28 100 35.2
343 0.33 1000 339.86
348 0.38

On the other hand, the pre-exponential fact¢r,L) to
where AG(nuc.) represents the free energy change assock(+,L) is
ated to the nucleation event, which is typically very small, of L -
the order of 1/10 kcal/mol[15]. On the other hand f(+,L)=3"tx10"s (10
AH(nuc.)=h~ —3.1kcal/mol.[15]. Equation(7) allows us
to infer the existence of a denaturation temperature, taken

be the value at whicih G(nuc.y~0, and beyond which no that L discretized torsions adopt simultaneously the helical

nucleation kernel for helix formation becomes stable. Th . b ’ .
. i o ; amachandran basin from within three possible choices.
values given in Table | reveal that ~313 °K. A consistent Thus, we get

theory should yield and identical value for the denaturation
temperature regarded as the temperature at which the criticali(+ | )=f(+ L)exd —B(+,L)/RT]=3"2-x101s L

size bubble forms expeditiously within physically-relevant (12)
timescales. This is indeed the case, as shown in the next

section. Furthermore, the value given is in perfect agreement Now we must comput&(—,L). As indicated in Sec. IlI
with that obtained from calorimetric measurements of denaA, we getB(—,L)=—AH(N—L). On the other hand, the
turation criticality in proteins of comparable sigE6]. pre-exponential factof(—,L) becomes now proportional to
2(N-L), the sum of all torsional possibilities which are suc-
cessful in shifting any of théN-L) local conformations to

. o ) _ one of the two Ramachandran basins different from the one
In order to determine the rate-limiting step in the helix compatible with the helix. Thus, we get

unfolding transition, we assume that a bubble of lerigih
a helix of contour lengtiN forms at one extremity7] asso- f(—,L)=2(N-L)x10"s™? (12)
ciated to the contour regiopN—L+1N]. As we know, ) ) )
such bubbles may easily reverse back to the helical conforvhere 13s™*=torsional frequency for a residue engaged in
mation[2] unless they reach a critical size=L*, which has ~ an a-helix [6]. _

been empirically estimated to be about 30%In the latter Using Egs.(6), (9)-(12) we can translate E¢(8) into a
case, the bubble becomes equally prone to expansion alo¢rking equation to determine the critical siz¢ of the
the helix, triggering the helix coil transition. In order to com- helix-destruction kernel at temperatuFeas:

pute L*, we must determine the Arrhenius transition rates oL —

k(—,L) andk(+,L), wherek(—,L) denotes the unimolecu- 3 x10's

Igr rate of dismantling the remaining heli?< with contour re- =2(N-L*)x107s !

gion[1N—L], andk(+,L) denotes the unimolecular rate of

full helix recovery, with both rates determined relative to the xXexp[[—(2yb+RTIn3)(N-L*)+2ybr]/RT}.
L bubble as the starting point. Thus} must satisfy the

equation:

wheref= 10's™ 1 is the mean free torsional frequency of a
8[’,(1)) degree of freedonfil7], and 3" is the probability

B. Coarse nucleation rate theory

(13

Equation(13) is transcendental and thus it cannot be effec-
tively manipulated algebraically: it will be solved numeri-

N . ) , cally, as indicated in Sec. IV.
The kinetic barrieB(+,L) associated to helix recovery

(or L-bubble destructionis of entropic origin6,10], sincelL
units must be frozen in a single Ramachandran basin to re-
store thegl N— L+ 1,N]-helix. Thus, we obtain: The numerical solution of Eq13) obtained at a typical
renaturation temperatuiie=308 °K is displayed in Table II.
B(+,L)=—TAS(+,L)=LRTIn3. 9 Direct inspection of the results reveal the rapidly converging

K(—,L*)=K(+,L*). 8)

IV. RESULTS
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TABLE Ill. Temperature dependence of the critical bubble sizefrom the perspective of nucleation kinetics. Furthermore, by
and of the timet(L*) of formation of the critical bubble. The re- contrasting Tables | and Ill, we can establish the consistency

sults were obtained fd = 60. of our theory, sincerecisely the same physically realistic
) - temperature that makes it possible to form a helix-
T[°K] L t(L*) [s] destruction bubbléT=T* =313 °K) is the temperature that
298 23.49 184845 makes the I_<rarnel for helix forrnation (a_ single tu_rn) u_n_stable
Thus the critical temperature is unambiguously identified and
303 22.65 1229.24 . .
308 2179 98.16 the coincidence of both inferencésf. Tables | and 1l] de-

termines the validity of our approach.

313 20.92 9.36 . . . .

318 20.03 1.06 Furthermore, our theoretrcal.est_rmate is in solid agree-

323 1012 1410 ment with experrmer_rtal determinations of the de.na.turatr_on
' o, temperature of proteins of comparable size, and is identical

328 18.2 2’<1073 to the critical value obtained from calorimetric measure-

222 g;i 84’;11007 . ments by Privalov and coworkef46].

343 15.34 2.x10°4

348 14.35 6.%10°° V. DISCUSSION

In contrast with previous thermodynamic approaches or
behavior L* ~(1/3)N, in virtually perfect agreement with @d hockinetic models, this work introduces a kinetic theory

the previous empirical dependence determined from com@f nucleation for helix-coil transition phenomena rooted in a
puter simulations of favored folding pathways that yielded ac0a@rse microscopic description of torsional dynamics in the
predictive folding algorithni6]. long-time limit. The theory makes use of a discrete codifica-

The actualT-dependence of the critical bubble size is dis-tion of the local torsional states of the chain, while casting
played in Table 11l forN=60. This length, in turn, has been the entroprcally—_drrven solvophob_rc packing of the helix in
adopted since it corresponds to the shortest helix for whicerms of the microthermodynamic surface tension. In this
the empirically found asymptotic dependence is reproduce¥@y the microscopic level of description, which allows us to
to within 2% accuracycf. Table I). As expected, the critical determine the local torsional constraints, is combined with a
size of the bubble gets smaller as the temperature increasé8€S0scopic level required to account for nonlocal interac-
implying that thermal fluctuations make a smaller bubbletions. This is effe_ctrvely carried out by transferrrng_ the local
prone to expansion within the helix, while the same bubbldorsional constraints to the coarser level upon which surface
would not trigger the helix unfolding at lower temperatures.tension effects become meaningful. -

The actual timespan of the helix unfolding process is ki- _The theory does naassumethe existence of a denatur-
netically determined by the rate-determining step, that is, th&tion temperaturett deduces its existence from first prin-
formation of the critical kernel or bubble. According to the CiPles and yields accurate critical valueshe critical tem-
coarse nucleation theory developed in Sec. Il, this timespaRerature is obtained from dynamic considerations: It is
is t(L*), the time it takes to form the critical bubble, which defined as the lowest temperature at which the helix-

is given by: destruction kernel or bubble is formed within physically-
relevant timescale@ess than the overall folding timescales
t(L*)=(2L*) 1x10 s while the nuclear helix turn required to initiate the cascade of
helix-growth events becomes unstable.
xexp[[(2yb+RTIn3)L* —2ybr]/RT}. Besides accurately predicting the existence and concrete

(14)  value of the denaturation temperature, the theory validates
the empirical computational tenet that a bubble with size of
The dominant exponential dependentf,*)~expL*), about one third of the total contour length of the helix be-
with K=(2yb+RTIn3) is functionally in agreement with comes a critical helix-destruction kerngb]. Finally, our
previous generic estimations rooted in ad-hoc mesoscopitheory is shown to be consistent with previ@agshocmeso-
models[cf. Ref. [7], Eq. (57)]. However, in contrast with scopic models in which the existence of a denaturation tem-
such kinetic models that introdueepriori the existence of a perature is postulated, as opposed to being inferred from the
denaturation temperature, our nucleation theory does not néasic tenets themselvgs].
cessitate of this assumptioithe existence of the denatur-  While the stability of the helix-creation kernéh single
ation temperature is grounded in the kinetics of formation ofturn) is obviously independent of the length of the helix, the
the helix-destruction kernel itselfinspection of Table Ill re- feasibility of formation of the critical bubble is strongly
veals a sharp drop of over five orders of magnitudég( ) N-dependent. This observation leads us to generically define
as the temperature is raised from 298 °K to 323 °K, while thewo [T*(c.) andT* (d.)] critical values instead of ond ),
actual formation of the critical bubble becomes accessibla distinction which becomes more and more apparent in the
within meaningful over-all folding time$~10s forN=60 limit of long chains N>100. The critical temperature
[6]) only atT=T*=313°K. T*(c.), beyond which the creation kernel becomes unstable
This high sensitivity oft(L*) on T is responsible for the is in general lower than the critical temperature for helix
qualitatively dramatic effect, characterized dynamically bydestructionT*(d.). At 55<N<60, T*(c.) andT*(d.) are
the feasibility of helix unfolding within relevant timescales. within half a degree difference and therefore a single value
This fact explains the existence of a denaturation temperatuf* =T* (¢.)=T*(d.) is identifiable given the experimental



PRE 60 NUCLEATION THEORY FOR HELIX UNFOLDING IN . .. 4651

uncertainty of~1 degree[16—18. However, forN>60, a  coming work we shall attempt to construct a phase diagram
metastable folding phase of “slow denaturation” emergesto characterize the kinetic metastability regim&(c.)<T

for T within the regionT* (c.)<T<T*(d.). This “slow de- <T*(d.) as a function of chain length.

naturation” regime has been identified in spectroscopic—and

obviously not in thermodynamic—measuremefis§]. Ac-
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